29 research outputs found

    A low complexity distributed differential scheme based on orthogonal space time block coding for decode-and-forward wireless relay networks

    Get PDF
    This work proposes a new differential cooperative diversity scheme with high data rate and low decoding complexity using the decode-and-forward protocol. The proposed model does not require either differential encoding or channel state information at the source node, relay nodes, or destination node where the data sequence is directly transmitted and the differential detection method is applied at the relay nodes and the destination node. The proposed technique enjoys a low encoding and decoding complexity at the source node, the relay nodes, and the destination node. Furthermore, the performance of the proposed strategy is analyzed by computer simulations in quasi-static Rayleigh fading channel and using the decode-and-forward protocol. The simulation results show that the proposed differential technique outperforms the corresponding reference strategies

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Towards Independency Using LMN4DISABLED System for Disabled

    No full text
    We propose a wireless based system to localize, monitor, and navigate people with a single type of disability. The proposed system is called LMN4DISABLED . Smartphone devices are used as interfaces for disabled people to communicate with the surrounding environments. This paper studies two types of disabilities (1) blind people and (2) people on wheelchairs with no mental deficiencies. Experiments are performed on a three-floor university building. Sensor nodes and cameras are distributed in all rooms and hallways. Dijkstra routing algorithm is used to select the appropriate route for each profile. New localization algorithm is used in the experiments. Experiments show that LMN4DISABLED outperforms reference experiments that are not using LMN4DISABLED by about 50.8% for different types of disabilities. When separating the performance of the blind disabled people from the performance of the people on wheelchairs, experiments show that the blind performance improved by 55% while wheelchair users improved by 47% when using the LMN4DISABLED system compared to basic reference experiments for the same people that did not use the LMN4DISABLED

    MND for Helping People with Different Disabilities

    No full text
    This paper introduces a monitoring and navigation system to help people with disabilities ( MND WSN ). The proposed system is based on wireless sensor networks. In the MND WSN system, each disabled person uses a handheld smart phone device. Three types of disabilities are studied in this paper: (1) blind, (2) deaf, and (3) on wheelchair. We experimented with a three-floor university building. Sensor nodes and cameras are scattered in all rooms and hallways. Smart phones are used to communicate with the sensor nodes to take instructions to navigate through the appropriate path. Dijkstra's algorithm is used for navigation. MND WSN also monitors the disabled person while navigating. The proposed system is compared to a baseline reference experiment. Results show improvement of 34% compared to the baseline reference experiment

    A Novel Dynamic Approach for Risk Analysis and Simulation Using Multi-Agents Model

    No full text
    Static risk analysis techniques (SRATs) use event graphs and risk analysis assessment models. Those techniques are not time-based techniques and hence are inadequate to model dynamic stochastic systems. This paper proposes a novel dynamic approach to model such stochastic systems using Dynamic Fault Trees (DFT). The proposed model is called Generic Dynamic Agent-Based Model (GDABM) for risk analysis. GDABM is built on top of the well-known Agent-Based Modeling and Simulation (ABMS) technique. GDABM can model the dynamic system agents in both nominal (failure-free) and degraded (failure) modes. GDABM shows the propagation of failure between system elements and provides complete information about the system&rsquo;s configurations. In this paper, a complete detailed case study is provided to show the GDABM capabilities to model and study the risk analysis for such dynamic systems. In the case study, the GDABM models the risk analysis for a chemical reactor/operator and performs a complete risk analysis for the entire system. The GDABM managed to simulate the dynamic behavior of the system&rsquo;s components successfully using Repast Simphony 2.0. Detailed agent behavioral modes and failure modes are provided with various scenarios, including different time stamps. The proposed GDABM is compared to a reference model. The reference model is referred to as the ABM model. GDABM has given very promising results. A comparison study was performed on three performance measures. The performance measures used are (1) Accuracy, (2) response time, and (3) execution time. GDABM has outperformed the reference model by 15% in terms of accuracy and by 27% in terms of response time. GDABM incurs a slightly higher execution time (13%) when compared to the ABM reference model. It can be concluded that GDABM can deliver accepted performance in terms of accuracy and response time without incurring much processing overhead
    corecore